Experimental evaluation of a Recursive InterNetwork Architecture prototype

Sander Vrijders, Dimitri Staessens, Didier Colle (Ghent University – iMinds)
Francesco Salvestrini, Vincenzo Maffione (Nextworks s.r.l.)
Leonardo Bergesio, Miquel Tarzan-Lorente, Bernat Gaston, Eduard Grasa (i2CAT Foundation)
Basic concept of the Recursive InterNetwork Architecture

Theory

Applications
- TCP/UDP (L4)
- IP (L3)
- Ethernet (L2)
- Physical Media (L1)

Everyday practice

Applications
- UDP (L4)
- IP (L3)
- VXLAN (L2)
- UDP (L4)
- IP (L3)
- IP (L3)
- IEEE 802.3 (L2)
- MPLS (L2.5)
- IEEE 802.1Q (L2)
- IEEE 802.1ah (L2)
- 10GBASE-ER (L1)

RINA

Applications
- DIF
- DIF
- DIF
- Physical Media
IPC API

- APs communicate using a portId
- 6 operations:
 - `int _registerApp(appName, List<difName>)`
 - `portId _allocateFlow(destAppName, List<QoSParams>)`
 - `int _write(portId, sdu)`
 - `sdu _read(portId)`
 - `int _deallocate(portId)`
 - `int _unregisterApp(appName, List<difName>)`

- QoSParams are defined in a technology-agnostic way
 - Bandwidth-related, delay, jitter, in-order-delivery, loss rates, ...
Architectural Model

Application Specific Tasks
- Multipl exing
- IPC Resource Mgt.
- SDU Protection
- DIF Allocator

Other Mgt. Tasks
- IPC Mgt. Tasks
- DIF Process
- Mgmt Agent

System (Host)
- Appl. Process
- Shim IPC Process
- IPC Process
- Mgmt Agent

System (Router)
- Appl. Process
- Shim IPC Process
- DIF
- IPC Process
- Mgmt Agent

System (Host)
- Appl. Process
- Shim IPC Process
- DIF
- IPC Process
- Mgmt Agent

IPC API
- Data Transfer
 - SDU Delimiting
 - Data Transfer
 - Relaying and Multiplexing
 - SDU Protection
- Data Transfer Control
 - Transmission Control
 - Retransmission Control
 - Flow Control
- Layer Management
 - CACEP
 - Authentication
 - CDAP Parser/Generator
- RIB
- RIB Daemon
- Enrollment
- Flow Allocation
- Resource Allocation
- Forwarding Table Generator

Increasing timescale (functions performed less often) and complexity
IRATI OS/Linux implementation

Source: S. Vrijders, F. Salvestrini, E. Grasa, M. Tarzan, L. Bergesio, D. Staessens, D. Colle
“Prototyping [RINA], the IRATI project approach”, IEEE Network, March 2014
Host A

Host R

Host B

Shim IPC Process

VLAN 300

Shim DIF ETH VLAN

Shim IPC Process

VLAN 400

IRATI

test1.

IRATI

test2.

IRATI

test3.
Host A

Host B

Host R

VLAN 300

VLAN 400

Shim IPC Process

Shim IPC Process

Shim IPC Process

Normal DIF A

test1. IRATI

test2. IRATI

test3. IRATI

ipcm
Host A

Host R

Host B

Shim IPC Process

Shim IPC Process

Shim IPC Process

Shim IPC Process

VLAN 300

VLAN 400
Shim IPC
Process

test1.
IRATI

IRATI
test2.

IRATI
test3.

IRATI

Normal DIF A

Normal DIF A

Normal DIF A

Normal DIF A

VLAN 300

VLAN 400
Host A

Host B

Host R

<table>
<thead>
<tr>
<th>Host R</th>
<th>Host B</th>
<th>Host A</th>
</tr>
</thead>
<tbody>
<tr>
<td>rina-echo time server</td>
<td>rina-echo time client</td>
<td>ipcm</td>
</tr>
<tr>
<td>test1. IRATI</td>
<td>test2. IRATI</td>
<td>test3. IRATI</td>
</tr>
<tr>
<td>Normal DIF A</td>
<td>Normal DIF A</td>
<td>Normal DIF A</td>
</tr>
<tr>
<td>Shim IPC Process</td>
<td>Shim IPC Process</td>
<td>Shim IPC Process</td>
</tr>
<tr>
<td>VLAN 300</td>
<td>VLAN 400</td>
<td>VLAN 400</td>
</tr>
</tbody>
</table>
Bootstrapping a RINA network
Data center (DC) network
Example scenario: Customer access DC via the Internet
Experimental evaluation of a Recursive InterNetwork Architecture prototype
Extra information

- RINA workshop
 - 28 January 2015, Ghent Belgium

- IRATI prototype can be found at https://irati.github.io/stack/